Pendekatan Violin Plot sebagai Pengenalan Pola untuk Interpretasi Data Penjualan Spare Part Komputer


Authors

  • Furqoni Yudhistira Universitas Indraprasta PGRI, DKI Jakarta, Indonesia
  • Erlin Windia Ambarsari Universitas Indraprasta PGRI, DKI Jakarta, Indonesia
  • Frieyadie Universitas Nusa Mandiri, DKI Jakarta, Indonesia

DOI:

https://doi.org/10.47065/jieee.v2i4.925

Keywords:

Visual Modeling; Violin Plot; Data Distribution; Sales

Abstract

This study examines the use of visual modeling in understanding the sales patterns of computer spare parts at PT Prima Krida Solusindo. The use of violin plots serves as a method for data interpretation, focusing on the distribution of sales data to gain a deeper understanding of customer needs. This study involves 3893 samples with eight features being analyzed. Initial results show a broad variation in the sales of computer spare parts. For example, the highest unit sales occur in the first quarter, but the sales volume tends to be low. Opposite, sales in the second quarter tend to focus on purchases with a relatively similar volume. In addition, preferences for distribution channels, sales segmentation, sub-segmentation, and product types also vary in sales volume. While the violin plot aids in visualizing data distribution, this study also found that this method has limitations, such as category overlapping, that complicate interpretation. The inclusion of additional plots can facilitate a more detailed interpretation

Downloads

Download data is not yet available.

References

D. P. Astuti, “Sistem Informasi Penggajian Guru Di SMK Cakra Nusantara Depok Menggunakan Metode Gross,” Jurnal Ilmiah Multidisiplin, vol. 1, no. 3, pp. 118–112, 2023, [Online]. Available: https://jurnal.alungcipta.com/index.php/JIM

S. Julaeha, N. Kustian, and D. Parulian, “Pemetaan Tabel Relationship Dalam Visualisasi Diagram Relasi Untuk Eksplorasi Data Pada Database,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 5, no. 2, pp. 126–133, 2020.

N. Kustian, S. Julaeha, D. Parulian, N. Selvia, and E. W. Ambarsari, “Venn Versus Relation Diagram Models For Database Relation in SQL Command Line,” J Phys Conf Ser, vol. 1783, no. 1, p. 012050, Feb. 2021, doi: 10.1088/1742-6596/1783/1/012050.

Herlinda, A. C. Bramantia, N. Kustian, Khasanah, and E. W. Ambarsari, “Applying flower venn diagram for presenting database,” IOP Conf Ser Mater Sci Eng, vol. 1088, no. 1, p. 012006, Feb. 2021, doi: 10.1088/1757-899X/1088/1/012006.

N. Dwitiyanti, E. W. Ambarsari, and N. Kustian, “Interpretasi Basis Data Dengan Pendekatan Tabulasi Silang Untuk Pemetaan Diagram Venn,” Jurnal Publikasi Teknik Informatika, vol. 1, no. 2, pp. 81–89, 2022.

R. S. Hidayatullah, W. N. Cholifah, E. W. Ambarsari, N. Kustian, and S. Julaeha, “Sieve Diagram For Data Exploration of Instagram Usage Habit Obtained From Indonesia Questioner’s Sample,” J Phys Conf Ser, vol. 1783, no. 1, p. 012028, Feb. 2021, doi: 10.1088/1742-6596/1783/1/012028.

E. W. Ambarsari, A. A. R. Awaludin, A. Suryana, P. M. Hartuti, and R. Rahim, “Basic concept Pythagoras tree for construct data visualization on decision tree learning,” Journal of Applied Engineering Science, vol. 17, no. 4, 2019, doi: 10.5937/jaes17-21960.

M. Yusuf Syam et al., “Prediksi Flight Delay Berbasis Algoritma Neural Network,” Journal of Informatics, Electrical and Electronics Engineering, vol. 2, no. 1, pp. 26–30, 2022, [Online]. Available: https://djournals.com/jieee

N. Selvia, E. Windia Ambarsari, and N. Dwitiyanti, “Shortest Path Clustering Dalam Menyaring Tingkat Kepadatan Arus Lalu Lintas,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 2, pp. 396–403, 2023, doi: 10.30865/jurikom.v10i2.5979.

E. Windia Ambarsari, R. Avrizal, E. Doni Sirait, S. Dwiasnati, and R. Rahim, “Regression Tree Role for Interpret Monetizing of Game Live Streaming,” in Journal of Physics: Conference Series, 2019. doi: 10.1088/1742-6596/1424/1/012014.

R. Tanious and R. Manolov, “Violin Plots as Visual Tools in the Meta-Analysis of Single-Case Experimental Designs,” Methodology, vol. 18, no. 3, pp. 221–238, 2022, doi: 10.5964/meth.9209.

J. Hullman, P. Resnick, and E. Adar, “Hypothetical Outcome Plots OutperformError Bars and Violin Plots for Inferencesabout Reliability of Variable Ordering,” PLoS One, vol. 10, no. 11, Nov. 2015, doi: 10.1371/journal.pone.0142444.

W. Wiradhany, K. Adiasto, J. E. Yulianto, and I. Y. Kiling, “Pemahaman Peneliti Psikologi mengenai Besaran Sampel: Data dan Simulasi,” Jurnal Psikologi, vol. 46, no. 2, p. 163, Aug. 2019, doi: 10.22146/jpsi.24260.

J. L. Hintze and R. D. Nelson, “Violin Plots: A Box Plot-Density Trace Synergism,” Am Stat, vol. 52, no. 2, pp. 181–184, 1998, doi: 10.1080/00031305.1998.10480559.

R. Mcgill, J. W. Tukey, and W. A. Larsen, “Variations of Box Plots,” Am Stat, vol. 32, no. 1, pp. 12–16, 1978, doi: 10.1080/00031305.1978.10479236.

M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function,” The Annals of Mathematical Statistics, vol. 27, no. 3, pp. 832 – 837, 1956, doi: 10.1214/aoms/1177728190.

E. Parzen, “On Estimation of a Probability Density Function and Mode,” The Annals of Mathematical Statistics, vol. 33, no. 3, pp. 1065 – 1076, 1962, doi: 10.1214/aoms/1177704472.

K.-S. and P. D. N. Davis Richard A. and Lii, “Remarks on Some Nonparametric Estimates of a Density Function,” in Selected Works of Murray Rosenblatt, K.-S. and P. D. N. Davis Richard A. and Lii, Ed., New York, NY: Springer New York, 2011, pp. 95–100. doi: 10.1007/978-1-4419-8339-8_13.

M. Waskom, “seaborn: statistical data visualization,” J Open Source Softw, vol. 6, no. 60, p. 3021, Apr. 2021, doi: 10.21105/joss.03021.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Pendekatan Violin Plot sebagai Pengenalan Pola untuk Interpretasi Data Penjualan Spare Part Komputer

ARTICLE HISTORY


Published: 2023-06-30
Abstract View: 78 times
PDF Download: 46 times

Issue

Section

Articles