Analisis Metode Backpropagation Dalam Memprediksi Jumlah Produksi Daging Kambing di Indonesia


Authors

  • Rika Setiana STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Razalfa Aindi Siregar STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Fahry Husaini STIKOM Tunas Bangsa, Pematangsiantar, Indonesia
  • Agus Perdana Windarto STIKOM Tunas Bangsa, Pematangsiantar, Indonesia

DOI:

https://doi.org/10.47065/jieee.v2i4.1177

Keywords:

Artificial Neural Network; Backpropagation; Prediction; Production; Indonesia

Abstract

A science that has always developed rapidly until now is artificial neural networks. A computational science that works like the human nervous system is an artificial neural network. Artificial neural networks with the backpropagation method can make a prediction on data. In this article, a prediction will be made on the amount of goat production in Indonesia. Goats are one of the livestock that can produce nutritious meat. The lack of goat meat will cause the price of goat meat to rise. Producing enough goat meat helps stabilize the price of meat, but if goat meat production is less than demand, it will lead to price increases. Therefore, looking at the problems above, this study aims to predict goat meat so that in the future it can know how much goat meat must be predicted by processing data first and then being used as input in predicting the amount of goat meat production. Prediction is one way to estimate future demand. Avoiding the lack of meat availability, by predicting the amount of goat meat produced in such a way that there is no scarcity of goat meat and fluctuations in the price of goat meat in the market. Basic methods and data are required to make predictions. In this study, data was obtained from BPS Indonesia in the livestock section using data from 2001-2021 as training data and 2002-2022 as test data. The method applied in this article is the backpropagation algorithm. This article applies 5 network architectures implemented in the mathlab application. The architecture used in this article is 20-25-1 with a Mean Squred Error testing 0.00447765, in 20-30-1 architecture produces Mean Squred Error 0.00300466, in 20-35-1 architecture produces 0.00426823, in 20-37-1 architecture produces 0.00357757. Based on the best architecture produced in this study, the 20-15-1 architecture with 90% accuracy with a Mean Squared Error testing 0.00262384 at epoch 27915 Iterations. Thus it can be concluded that the backpropagation algorithm can provide good accuracy in the prediction process. With this research, the livestock industry can utilize it as one of the materials to predict goat meat in the future

Downloads

Download data is not yet available.

References

V. Rinata, A. Witjoro, A. Jalaluddin, and M. S. Amrilah, “Profil Inkubasi Bisnis Peternakan Kambing Berbasis Smart-Warehouse Terkonsep Plecs Sebagai Strategi Optimalisasi Potensi Bisnis Di Rural Area,” vol. 2, no. 1, pp. 76–86, 2022.

A. Eka, A. Juarna, T. Informatika, F. T. Industri, and U. Gunadarma, “Prediksi Pro duksi Daging Sapi Nasional dengan Meto de Regresi Linier dan Regresi Polinomial,” J. Ilm. Komputasi, vol. 20, no. 2, pp. 209–215, 2021.

Z. Febriana and D. Mellinia, “Implementasi Model CNN Dan Tensorflow Dalam Pendeteksian Jenis Daging Hewan Ternak,” vol. 9, no. 1, pp. 54–61, 2022.

M. Bramasta, P. Agung Bayupati, and D. Made, “Klasifikasi Citra Daging Menggunakan Deep Learning dengan Optimisasi Hard Voting,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 4, pp. 656–662, 2021.

A. Primawati, I. Mutia, and D. Marlina, “Analisis Klasifikasi Populasi Ternak Kambing dan Domba dengan Model Convolutional Neural Network,” vol. 14, no. 1, pp. 22–33, 2021.

Z. Y. Budiarto, Agus. Ciptadi, Gatot.Ardyah, Ramadhina, Satria, “Tingkat Pemotongan Kambing Lokal Betina (PIO-P11) di kluster tph swasta kediri,” vol. 22, no. 1, pp. 63–68, 2021.

P. Alicia, “Sistem Pakar Menggunakan Metode Forward Chaining dalam Mengidentifikasi Penyakit Kambing,” vol. 4, no. 4, pp. 7–10, 2022.

Z. Ottay, Rifaldy.Satria, Heru.Almaida, “IMPLEMENTASI METODE BACK-PROPAGATION DALAM MEMPREDIKSI JUMLAH PRODUKSI DAGING AYAM RAS PEDAGING DI INDONESIA.,” vol. 2, no. 2, pp. 66–74, 2022.

Y. Hendriyani, “Perbandingan Algoritma Backpropagation dan Learning Vector Quantization (LVQ) dalam Pengenalan Pola Bangun Datar Geometri,” vol. 20, no. 2, pp. 59–66, 2020.

M. Setya, A. Fauzi, B. Rahayudi, and C. Dewi, “Perbandingan Jaringan Saraf Tiruan LVQ Dengan Backpropagation Dalam Deteksi Dini Penyakit Jantung Koroner,” vol. 3, no. 2, pp. 1952–1960, 2019.

I. G. Ayu, A. Diatri, and I. K. W. Adnyana, “Analisis Perbandingan Metode LVQ Dan Backpropagation dalam Penentuan Keaslian Uang Kertas Rupiah Berbasis Parameter HSV,” vol. 5, no. April, pp. 73–83, 2019.

Y. Aprizal, R. I. Zainal, U. B. Darma, J. S. Tiruan, and L. V. Quantization, “PERBANDINGAN METODE BACKPROPAGATION DAN LEARNING VECTOR QUANTIZATION ( LVQ ) DALAM MENGGALI POTENSI MAHASISWA BARU DI,” vol. 18, no. 2, pp. 294–301, 2019.

S. Zikrullah and H. S. Tambunan, “Memprediksi Jumlah Produksi Daging Kambing Berdasarkan Provinsi Di Indonesia Dengan Menggunakan Jaringan Saraf Tiruan Backpropagation,” ZAHRA Bull. Big Data, Data Sci. Artif. Intell., vol. 1, no. 2, pp. 97–105, 2022.

D. Puspita et al., “Metode jaringan saraf tiruan dalam memprediksi jumlah populasi itik manila berdasarkan provinsi di indonesa,” vol. 2, no. 2, pp. 51–65, 2022.

E. Kurniawan et al., “IMPLEMENTATION OF BACKPROPOGATION METHOD WITH NGUYEN WIDROW,” vol. 6, no. 1, pp. 49–54, 2019.

C. Astria, A. P. Windarto, and I. S. Damanik, “Pemilihan Model Arsitektur Terbaik dengan Mengoptimasi Learning Rate Pada Neural Network Backpropagation,” vol. 9, no. 1, pp. 109–114, 2022.

B. Fachri, A. P. Windarto, and I. Parinduri, “Penerapan Backpropagation dan Analisis Sensitivitas pada Prediksi Indikator Terpenting Perusahaan Listrik,” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, p. 202, 2019.

A. F. Zuhri, A. P. Windarto, I. Parlina, M. Safii, S. R. Andani, and A. D. A. N. Pembahasan, “Optimasi Levenberg-Marquardt backpropagation dalam Mempercepat Pelatihan Backpropagation,” pp. 627–630, 2021.

S. M. Damanik, A. Perdana, W. Saputra, R. Dewi, and S. R. Andani, “Optimasi Data Menggunakan Teknik Backpropagation dalam Meningkatkan Hasil Nilai Akurasi,” pp. 657–662, 2021.

A. Herawan, “Pengembangan Model Jaringan Syaraf Tiruan untuk Mendeteksi Anomali Satelit LAPAN- TUBSAT,” vol. 5, no. 2, pp. 230–239, 2019.

D. F. Auliasari, G. Febrianti, A. P. Windarto, and D. Hartama, “Analisis Model Backpropagation Dalam Meramalkan Tingkat Penjualan Saldo ‘ Link Aja ,’” vol. 2, no. 1, pp. 10–16, 2022.

B. Yanto, R. Hutagaol, and R. Rahman, “Analisis Optimasi Algoritma Backpropagation Momentum Dalam Memprediksi Jenis Tingkat Kejahatan Di Kecamatan Tambusai Utara Budi,” vol. 1, pp. 47–60, 2022.


Bila bermanfaat silahkan share artikel ini

Berikan Komentar Anda terhadap artikel Analisis Metode Backpropagation Dalam Memprediksi Jumlah Produksi Daging Kambing di Indonesia

ARTICLE HISTORY


Published: 2023-06-30
Abstract View: 78 times
PDF Download: 40 times

Issue

Section

Articles